Dualising Complexes and Twisted Hochschild (co)homology for Noetherian Hopf Algebras

نویسندگان

  • K. A. BROWN
  • J. J. ZHANG
چکیده

We show that many noetherian Hopf algebras A have a rigid dualising complex R with R = A[d]. Here, d is the injective dimension of the algebra and ν is a certain k-algebra automorphism of A, unique up to an inner automorphism. In honour of the finite dimensional theory which is hereby generalised we call ν the Nakayama automorphism of A. We prove that ν = Sξ, where S is the antipode of A and ξ is the left winding automorphism of A determined by the left integral of A. The Hochschild homology and cohomology groups with coefficients in a suitably twisted free bimodule are shown to be non-zero in the top dimension d, when A is an Artin-Schelter regular noetherian Hopf algebra of global dimension d. (Twisted) Poincaré duality holds in this setting, as is deduced from a theorem of Van den Bergh. Calculating ν for A using also the opposite coalgebra structure, we determine a formula for S generalising a 1976 formula of Radford for A finite dimensional. Applications of the results to the cases where A is PI, an enveloping algebra, a quantum group, a quantised function algebra and a group algebra are outlined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hopf–hochschild (co)homology of Module Algebras

Our goal in this paper is to define a version of Hochschild homology and cohomology suitable for a class of algebras admitting compatible actions of bialgebras, called “module algebras” (Definition 2.1). Our motivation lies in the following problem: for an algebra A which admits a module structure over an arbitrary bialgebra B compatible with its product structure, the Hochschild or the cyclic ...

متن کامل

Twisted Poisson duality for some quadratic Poisson algebras

We exhibit a Poisson module restoring a twisted Poincaré duality between Poisson homology and cohomology for the polynomial algebra R = C[X1, . . . , Xn] endowed with Poisson bracket arising from a uniparametrised quantum affine space. This Poisson module is obtained as the semiclassical limit of the dualising bimodule for Hochschild homology of the corresponding quantum affine space. As a coro...

متن کامل

Twisted Poincaré duality for some quadratic Poisson algebras

We exhibit a Poisson module restoring a twisted Poincaré duality between Poisson homology and cohomology for the polynomial algebra R = C[X1, . . . , Xn] endowed with Poisson bracket arising from a uniparametrised quantum affine space. This Poisson module is obtained as the semiclassical limit of the dualising bimodule for Hochschild homology of the corresponding quantum affine space. As a coro...

متن کامل

Gorenstein global dimensions for Hopf algebra actions

Let $H$ be a Hopf algebra and $A$ an $H$-bimodule algebra‎. ‎In this paper‎, ‎we investigate Gorenstein global dimensions for Hopf‎ ‎algebras and twisted smash product algebras $Astar H$‎. ‎Results from‎ ‎the literature are generalized‎. 

متن کامل

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006